

Absolute Position Rotary Electric EncoderTM

The DL-66 is a member of the DL series of Electric Encoders™ a product line based on Netzer Precision Motion Sensor proprietary technology. EE products are characterized by features that enable unparalleled performance:

- High resolution and unparalleled precision
- High tolerance to temperature extremes, shock, EMI, RFI and magnetic fields
- IP65
- Holistic signal generation
- Digital interfaces for absolute position
- Buil In Test and diagnostic (BIT)

General

Angular resolution 1

Static error ²	< 0.010°	
Maximum operational speed	4,000 rpm	
Measurement range	Single turn, unlimited	
Mechanical		
Starting torque	30 x 10 ⁻⁴ N.m	
Shaft radial force (max)	100 N	
Total weight	150gr	
Outer diameter / profile	95 / 66 mm	
Material (case, shaft)	Aluminum / Stainless steel	

18 bits: 262,144 CPR

Electrical

Supply voltage ⁴	5VDC ± 5%
Current consumption	<70 mA
Interconnection	Shielded cable

The holistic structure of the Electric Encoder™ makes it unique: Its output reading is the averaged outcome of the entire area of the rotor. This feature allows the EE a tolerant mechanical mounting and to deliver outstanding precision.

Due to the absence of components such as flexible couplers, glass discs, light sources and detectors along with very low power consumption enables the EE to deliver virtually failure-free performance in nearly all types of conditions.

The internally shielded, DC- operated EE includes an electric field generator, a field receiver, sinusoidal-shaped dielectric rotor, and processing electronics.

The EE output is a digital serial synchronous with absolute position single turn.

This combination of high precision, low profile and, low weight has made Netzer Precision encoders highly reliable and particularly well suited to a wide variety of industrial automation and harsh environment applications.

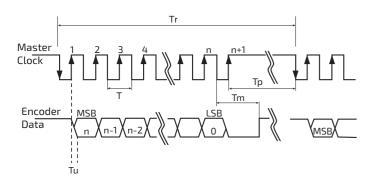
Environmental

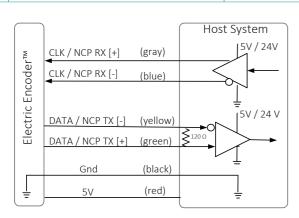
EMC	IEC 6100-6-2, IEC 6100-6-4
Operating temperature range ³	-55°C to +85°C
Relative humidity	98% Non condensing
Shock endurance	150 g for 11 ms
Vibration endurance	20 g 10 – 2000 Hz
Protection	IP 65

Notes - Optional (Call)

1	Angular resolution	19 - 20 bit
2	Static Error	< 0.005 Deg
3	Operating temperature	-55 °C to +125 °C
4	Supply voltage	24 VDC

Absolute Position Rotary Electric Encoder™





Digital SSi Interface

Synchronous Serial Interface (SSI) is a point to point serial interface standard between a master (e.g. controller) and a slave (e.g. sensor) for digital data transmission.

	Description	Recommendations	
n	Total number of data bits 12 - 22		
Т	Clock period		
f= 1/T	Clock frequency	0.1 ÷ 5.0 MHz	
Tu	Bit update time	200 nsec	
Тр	Pause time	26 - ∞ µsec	
Tm	Monoflop time	>25 µsec	
Tr	Time between 2 adjacent requests	Tr > n*T+26 μsec	
fr=1/Tr	Data request frequency		

SSi / BiSS output signal parameters

Signal latency	50 μSec
Output code	Binary
Serial output	Differential RS-422
Clock	Differential RS-422
Clock Frequency	0.1 ÷ 5.0 MHz
Position update rate	30 KHz

SSi / BiSS interface wires color code

Clock +	Grey	Clock	
Clock -	Blue		
Data -	Yellow	Data	
Data +	Green	Dala	
GND	Black	Ground	
+5V	Red	Power supply	

Software tools: (SSi / BiSS - C)

Advanced calibration and monitoring options are available by using the factory supplied **Electric Encoder Explorer** software, This facilitates proper mechanical mounting, offsets calibration and advanced signal monitoring.

IBISS INTERFACE

Digital BiSS-C Interface

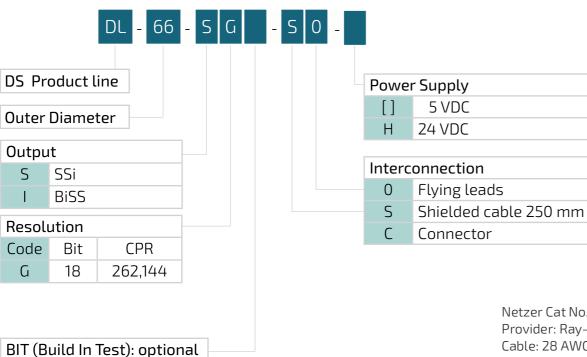
BiSS – C Interface is unidirectional serial synchronous protocol for digital data transmission where the Encoder acts as "slave" transmits data according to "Master" clock. The BiSS protocol is designed in B mode and C mode (continuous mode) .The BiSS-C interface as the SSi is based on RS-422 standards.

Bit # Description		Default	Length	
28	Ack	Period during which the encoder calculates the absolute position, one clock cycle	0	1/clock
27	Start	Encoder signal for "start" data transmit	1	1 bit
26	"0"	"start" bit follower	0	1 bit
825	AP	Absolute Position encoder data		
7	Error	Error (amplitude levels)	1	1 bit
6	Warn.	Warning (non active)	1	1 bit
05	CRC	The CRC polynomial for position, error and warning data is: $x^6 + x^1 + x^0$. It is transmitted MSB first and inverted. The start bit and "0" bit are omitted from the CRC calculation.		6 bits
	Timeout	Elapse between the sequential "start" request cycle's.		25 µs

Moving. Precisely. With You.

None

BIT


Absolute Position Rotary Electric Encoder \square DL-66 \square core

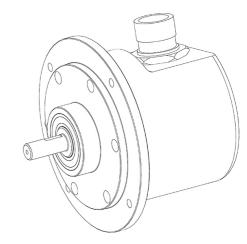


Cable

Ordering Code

Netzer Cat No.: CB 00034 Provider: Ray-Q USA.

Cable: 28 AWG twisted pair (3): 2 (28 AWG 40/44 tinned copper,


Insulation: PFE 0.005" OD).

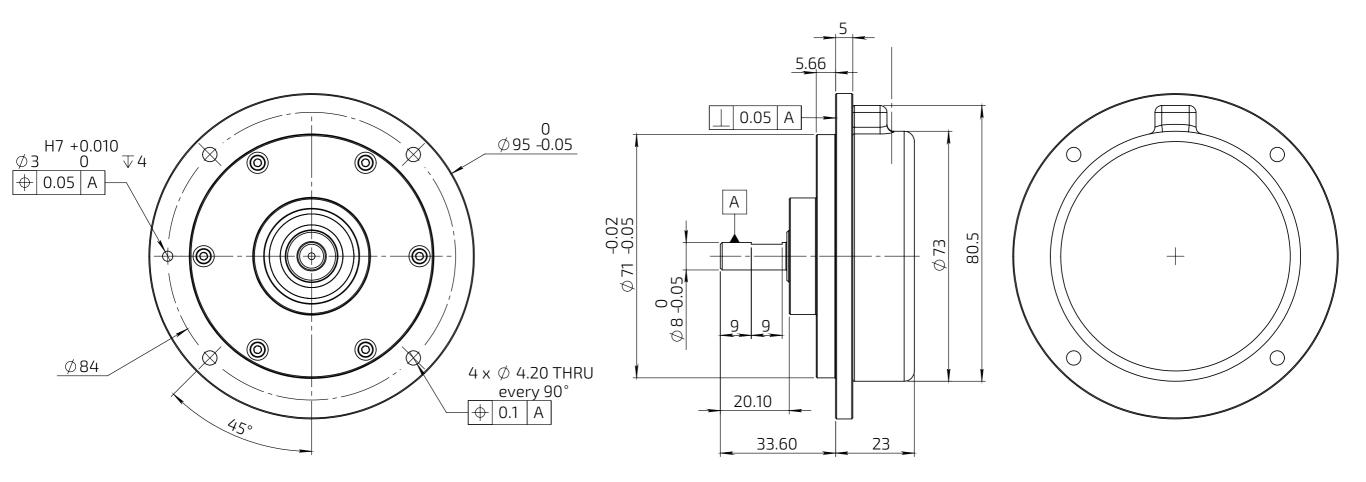
Braided shield: Thinned copper braided 95% min. coverage.

Jacket: 0.44 silicon rubber (NFA 11-A1) Temperature rating: -60 to +150 Deg C.

Pair #	Color	28 AWG twisted pairs (3)	
A1-A2	Red / Black		
A3-A4	Gray / Blue	43 4 A5	Braided shield
A5-A6	Green / Yellow	A6	Jacket 0.44 mm
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
			Ø 3.53 ±0.2 mm

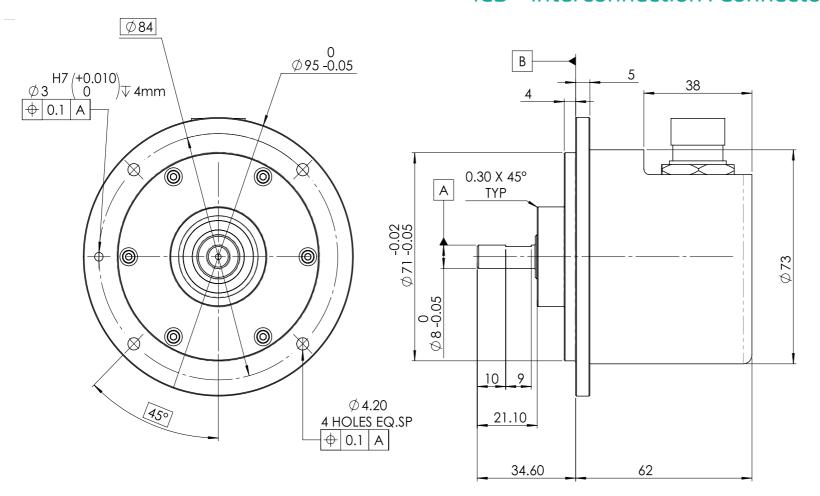
Connector

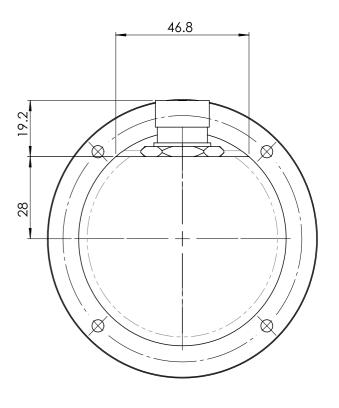
Pin #	Description
1	Clock +
2	Clock -
4	Data -
3	Data +
5	GND
6	+5 / 24 VDC


Connector: Amphenol D38999 / 24WB35PB

ICD - Interconnection : Cable

UNLESS OTHERWISE SPECIFIED


Dimentions are in: mm Surface Finish: N6 Linear Tolerances: ±0.5 deg All Chamfer: 0.1 mm x 45°



Absolute Position Rotary Electric Encoder \square DL-66 \square core

ICD - Interconnection: Connector

UNLESS OTHERWISE SPECIFIED

Dimentions are in: mm Surface Finish: N6 Linear Tolerances: ±0.5 deg All Chamfer: 0.1 mm x 45°