

USER MANUAL | DS-25

Table of Contents

1.	Preface 1.1 Version 2.0: November 2021 1.2 Applicable documents	. 2
2.	ESD Protection	. 2
3.	Product Overview 2 3.1 Overview 2 3.2 Installation flow chart 2 3.3 Encoder mounting 2	2 2
4.	Unpacking 4.1 Standard order	
5.	Electrical Interconnection 5.1 Absolute position over SSi or BiSS-C 5.2 Setup mode over NCP 5.3 Electrical connection and grounding	4 4
6.	Software Installation6.1 Minimum requirements6.2 Installing the software	. 4
7.	Mounting Verification7.1 Starting the Encoder Explorer7.2 Mechanical installation verification	. 5
8.	Calibration58.1 Offset calibration88.2 CAA calibration88.3 Setting the encoder zero point88.4 Jitter test8	5 6 7
9.	Operational Mode 9.1 SSi / BiSS	
10.	Mechanical Drawings	-11

1. Preface

- 1.1 Version 2.0: November 2021
- 1.2 Applicable documents
- DS-25 electric encoder data sheet

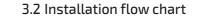
2. ESD protection

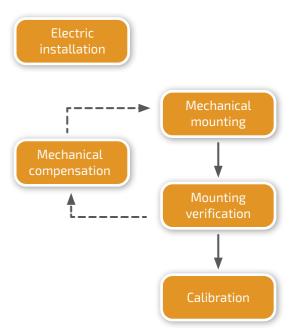
As usual for electronic circuits, during product handling do not touch electronic circuits, wires, connecters or sensors without suitable ESD protection. The integrator / operator shall use ESD equipment to avoid the risk of circuit damage.

3. Product Overview

3.1 Overview

The DS-25 absolute position Electric Encoder[™] is a revolutionary position sensor originally developed for harsh environment critical applications. Currently it performs in a broad range of applications, including defense, homeland security, aerospace, and medical and industrial automation.

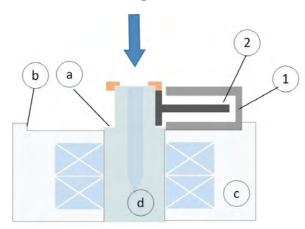

The Electric Encoder[™] non-contact technology relies on an interaction between the measured displacement and a space/time modulated electric field.

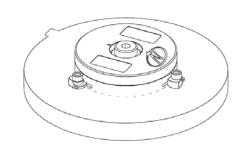

The DS-25 Electric EncoderTM is semi-modular, i.e., its rotor and stator are separate, with the stator securely housing the rotor.

3

- (1) Encoder stator
- (2) Encoder rotor
- (3) Encoder mounting clamps
- (4) Rotor fastner
- (5) Cable interface

5

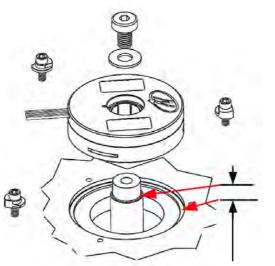




3.3 Encoder mounting

The encoder rotor (2) attaches to the host shaft (d) by pressing it against a dedicated shoulder (a), a screw and washer or circular spring and washer at the end of the shoulder maintain pressure, recommended force of 0.3 Nm with M3 screw.

The encoder stator (1) is centered by circumferential step (b) and attached to the host stator (c) using three encoder clamps, recommended force of 0.3 Nm with the supplied encoder clamps.

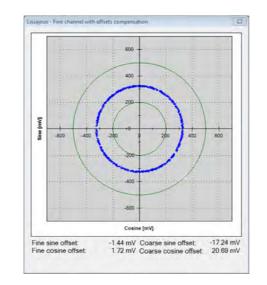

Note: DO NOT use screw locking materials contain Cyanoacrylate which interact aggressively with the sensor body made of Ultem.

Encoder stator / Rotor relative position

The rotor is floating, therefore, for proper relative axial mounting distance "H" between the shaft shoulder (b) and stator mounting recess (a) should be 1.4 mm nominal.

For ease of mechanical mounting compensation by rotor shims, the recommended distance is 1.4 - 0.05 mm, yielding analog output.

The optimal recommended amplitude values are middle of the range according to those shown in the Encoder Explorer software and vary according to the encoder type.



H 1.4mm +0/-0.05

The DS-25 amplitudes compensation

Mechanical compensate by using 50 μ m shims below the rotor (available as DS-25-R-00 kit), will increase the amplitude level by ~ 50mV.

Verify proper rotor mounting with the Encoder Explorer tools "Signal analyzer" or "Mechanical installation verification."

Note: for more information please read paragraph 6

4. Unpacking

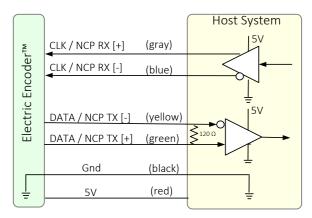
4.1 Standard order

The package of the standard DS-25 contains the encoder with 250mm shildedd cable AWG30 and EAPK004 kit encoder mounting clamps, (3 clamps, 0-80 UNF HEX Socket screw L 3/16", S.S.)

Optional accessories:

- (1) DS-25-R-00, Rotor shims kit (x10 stainless steel shims, 50um each)
- (2) MA-DS25-004, Shaft end installation kit (M3x5 screw + washer)
- (3) CNV-00003, RS-422 to USB converter (Setup Mode)
- (4) NanoMIC-KIT-01, RS-422 to USB converter. Setup & Operational modes via SSi /BiSS interface.
- (5) DKIT-DS-25-SF-SO, Mounted SSi encoder on rotary jig, RS-422 to USB converter and cables.
- (6) DKIT-DS-25-IF-SO, Mounted BiSS encoder on rotary jig, RS-422 to USB converter and cables.

5. Electrical interconnection


This chapter reviews the steps required to electrically connect the encoder with digital interface (SSi or BiSS-C).

Connecting the encoder

The encoder has two operational modes:

5.1 Absolute position over SSi or BiSS-C:

This is the power-up default mode

SSi / BiSS interface wires color code

Clock +	Grey	Clask
Clock -	Blue	Clock
Data -	Yellow	Data
Data +	Green	Dala
GND	Black	Ground
+5V	Red	Power supply

5.2 Setup mode over NCP (Netzer Communication Protocol)

This service mode provides access via USB to a PC running Netzer Encoder Explorer application (on MS Windows 7/10). Communication is via Netzer Communication Protocol (NCP) over RS-422 using the same set of wires.

Use the following pin assignment to connect the encoder to a 9-pin D-type connector to the RS-422/USB converter CNV-0003 or the NanoMIC.

Electric encoder interface, D Type 9 pin Female

21 1			
Description	Color	Function	Pin No
	Gray	Clock / RX +	2
SSi Clock / NCP RX	Blue	Clock / RX -	1
	Yellow	Data / TX -	4
SSi Data / NCP TX	Green	Data / TX +	3
Ground	Black	GND	5
Power supply	Red	+5V	8

5.3 Electrical connection and grounding

The encoder does NOT come with specified cable and connector, however, do observe grounding consideration:

[1] The cable shield does not connect to the power supply return line.

[2] Ground the host shaft to avoid interference from the host system, which could result in encoder internal noise.

Note: 4.75 to 5.25 VDC power supply required

6. Software installation

The Electric Encoder Explorer (EEE) software:

- Verifies Mechanical Mounting Correctness
- Offsets Calibration
- Sets up general and signal analysis

This chapter reviews the steps associated with installing the EEE software application.

6.1 Minimum requirements

- Operating system: MS windows 7/10, (32 / 64 bit)
- Memory: 4MB minimum
- Communication ports: USB 2
- Windows .NET Framework, V4 minimum

6.2 Installing the software

- Run the Electric Encoder[™] Explorer file found on Netzer website: <u>Encoder Explorer</u> <u>Software Tools</u>
- After the installation you will see Electric Encoder Explorer software icon on the computer desktop.
- Click on the Electric Encoder Explorer software icon to start.

Connect Netzer encoder to the converter, connect the converter to the computer and run the Electric Encoder Explorer Software Tool

7. Mounting verification

7.1 Starting the Encoder Explorer

Make sure to complete the following tasks successfully:

- Mechanical Mounting
- **Flectrical Connection**
- Connecting Encoder for Calibration
- Encoder Explore Software Installation

Run the Electric Encoder Explorer tool (EEE)

Ensure proper communication with the encoder: (Setup mode by defoult).

- (a) The status bar indicates successful communication.
- (b) Encoder data displays in the encoder data area. (CAT No., Serial No.)
- (c) The position dial display responds to shaft rotation.

optimal performance. It is also reccomended to observe the

Perform mounting verification & rotation direction selection before calibration to ensure

instaletion at the [Tools - Signal Analizer] window.

7.2 Mechanical installation verification

The Mechanical Installation Verification provides a procedure that will ensure proper mechanical mounting by collecting raw data of the fine and coarse channels during rotation.

(d) Select [Mechanical Mounting Verification] on the main screen.

(e) Select [Start] to initiate the data collection.

(f) Rotate the shaft in order to collect the fine and coarse channels data.

(g) At the end of a successful verification, the SW will show "Correct Mechanical Installation."

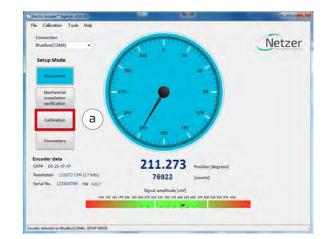
	Mechanical installation status		
	Correct n	nechanical installati	on g
bullens nor	Channel select	Samples per channel 500 +	Total time [sec] [25:00
Fine Cosine [#V]			
Restart			Close

(h) If the SW indicates "Incorrect Mechanical Installation," correct the mechanical position of the rotor, as presented in paragraph 3.3 - "Rotor Relative Position."

ect Coarse	Samples per channel	Total time (sec)
		Total time [sec]
Matthew 11 Coarse		
	500 .	25.00
		Close

8. Calibration

New feature

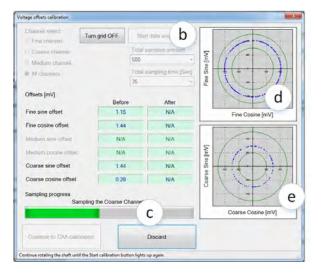

Auto-Calibration option enabled. Refer to document: <u>Auto-calibration-</u> feature-user-manual-V01

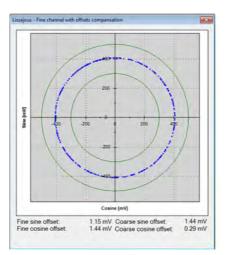
8.1 Offset calibration

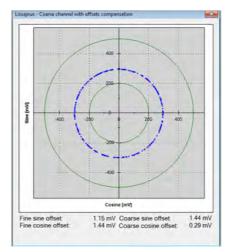
For optimal performance of the Electric Encoders, the inevitable DC offset of the sine and cosine signals must be compensated over the operational sector.

After successfully completing the Mounting Verification procedure:

(a) Select [Calibration] on the main screen.




(b) Start the data acquisition while rotating the shaft.


The progress bar (c) indicates the collection progress.

Rotate the axis consistently during data collection-covering the working sector of the application end to end-by default the procedure collects 500 points over 75 seconds. Rotation speed is not a parameter during data collection. Data collection indication shows for the fine/coarse channels. a clear "thin" circle appears in the center (d) (e) with some offset.

Offset compensated fine / Corse channel

8.2 CAA calibration

The following calibration aligns the coarse/ fine channel by collecting data from each point of both channels.

Select [Continue to CAA Calibration]

In the CAA angle calibration window, select the relevant option button from the measurement range options (a):

- Full mechanical rotation shaft movement • is over 10deg - recommended.
- Limited section define operation of the • shaft in a limited angle defined by degrees in case of <10deg
- Free sampling modes define the number of calibration points in the total number of points in the text box. The system displays the recommended number of points by default. Collect a minimum of nine points over the working sector.
- Click the [Start Calibration] button (b)
- The status (c) indicates the next required • operation; the shaft movement status; the current position, and the next target position to which the encoder should be rotated.
- Rotate the shaft/encoder to the next . position and click the [Continue] button (c) - the shaft should be in STAND STILL during the data collection. Follow the indication/ interactions during the cyclic process for positioning the shaft --> stand still --> reading calculation.
- Repeat the above step for all defined • points. Finish (d)
- Click the [Save and Continue] button (e).

The last step saves the offsets CAA parameters, completing the calibration process.

Management				
Measurement Full mecha Limited sec Free sample	nical rotation tion [degrees]	Total number of points		
Shaft moveme	ent status			
No shaft move during sampling	ement was detected ng.	Start calibration	b	
Calibration pro	ocess control			
Continue	c	Stop samplin	g	
	nt incremental position sample position:	0 00 degrees. 0.00 degrees.		
Results [electric	rical degrees] Before calibration	After calibration		
CAA	-8.70	N/A		
MAA		N/A		
e Save and	l continue	Discard	d	
Press Start to begin.				

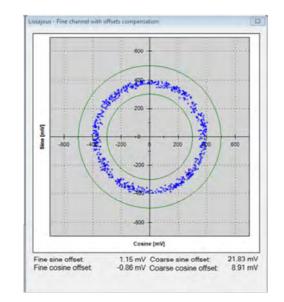
8.3 Setting the encoder zero point

The zero position can be defined anywhere in the working sector. Rotate the shaft to the desired zero mechanical position.

Go into "Calibration" button at the top menu bar, press "Set UZP".

Select "Set Current Position" as zero by using the relevant option, and click [Finish].

User Zero Position			
Set current position as	0.000	*	degrees
Set current position as	0	3 14	counts
Set specific UZP to	0.000	*	degrees
Set specific UZP to	0	*	counts
Finish		Dis	card


California Concertor Reconstruction Reconstr

8.4 Jitter test

Perform a jitter test to evaluate the quality of the installation; the jitter test presents the reading statistics of absolute position readings (counts) over time. Common jitter should be up +/- 3 counts; higher jitter may indicate system noise.

Current Absolute Position Min Current			AP Jitter histogram	
Min Current legrees: 0.000 0.000	Max 359.997	500		
Counts 0 0	131071	480		
itsw [counts] ± 65,535.5		460		
iming and Sampling		440 420		
Time between data requests [mSe	d 10 2	400		
Mount of samples	500 -	940 940 940		
Adde Resolution AP Fine Charpel res Coarse Charpel resolution Coarse Charpel resolution Start Nexuts Prevail: Patter (Spree) ± 50027	iolution: PEA	te enjen trigt solution 2000 galante en utalitation 2000 galante en utalitation 2000 galante en utalitation 2000 galante en utalitation 2000 galante 2000 galante		
4P maximum (degreed), 359.9973 6P molecum (degreed), 60000 4P Jähr (coartis) a 45536 4P maximum (coartis), 131671 4P maximum (coartis), 131671 4P molecum (coartis), 0		100 80 40 20 0	AP in counts	1310/

In case the reading data (blue dots) are not evenly distributed on a thin circle, you may experience "noise" in your installation (check shaft/stator grounding).

Error! Fine Roundness factor was 78.07% which is less then 85%!

9. Operational Mode

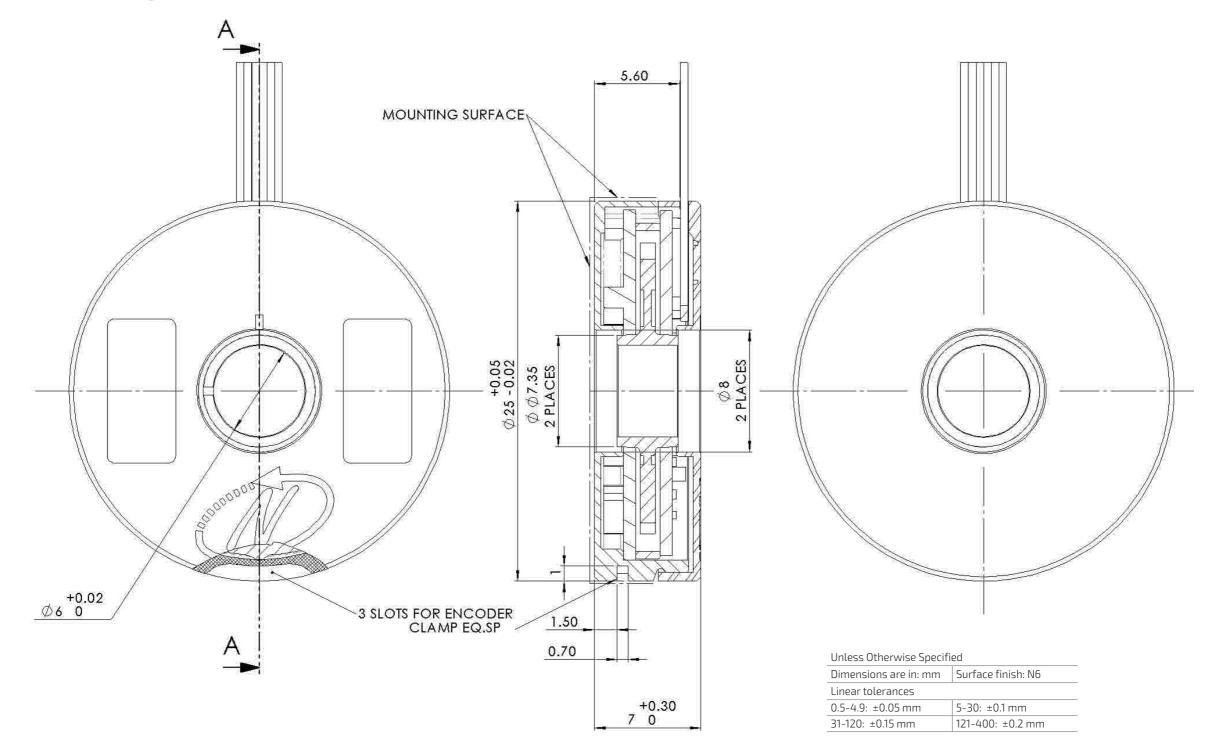
9.1 SSi / BiSS

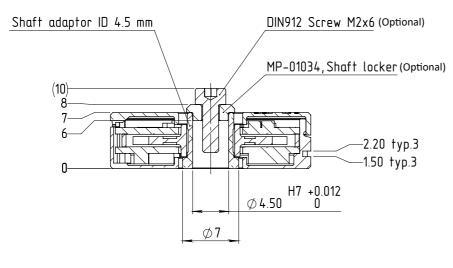
Operational mode indication of the SSi / BiSS Encoder interface available by using the NanoMIC.

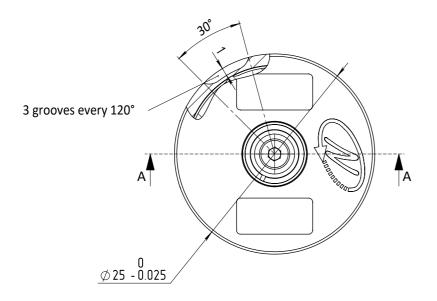
For more information read about NanoMIC on Netzer website

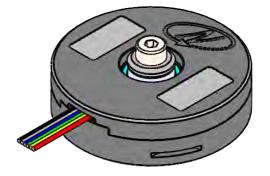
The operational mode presents the "real" SSi / BiSS interface with 1MHz clock rate.

Protocol SSi


Protocol BiSS

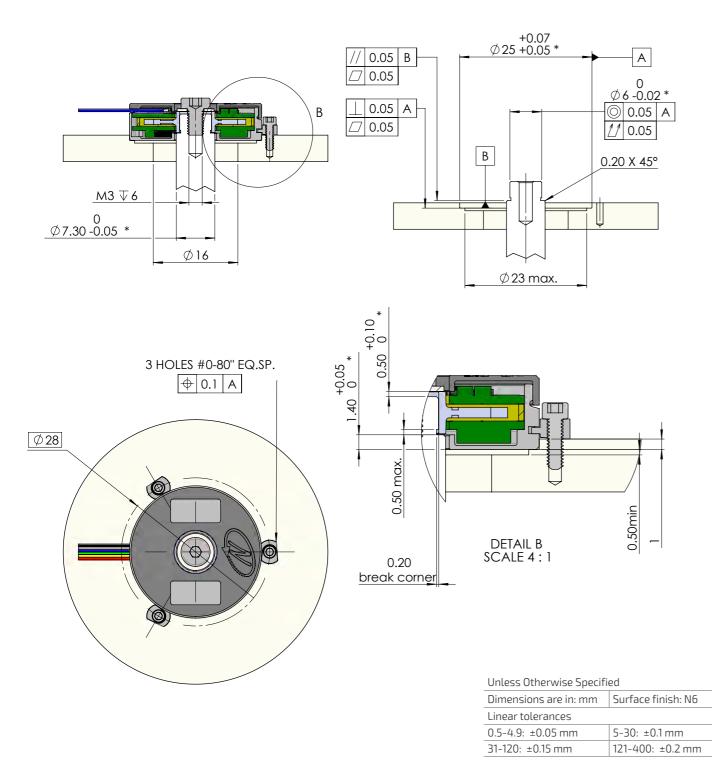

10. Mechanical Drawings

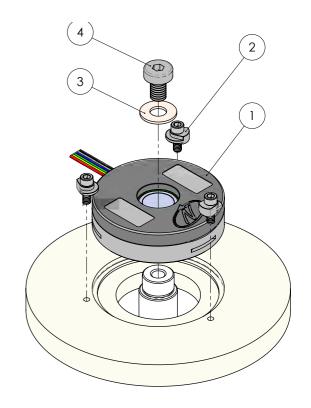




DS-25 with rotor metal sleeve

SECTION A-A


U	Inl	.ess	Ot	herv	vise	Spe	ecifi	ed	

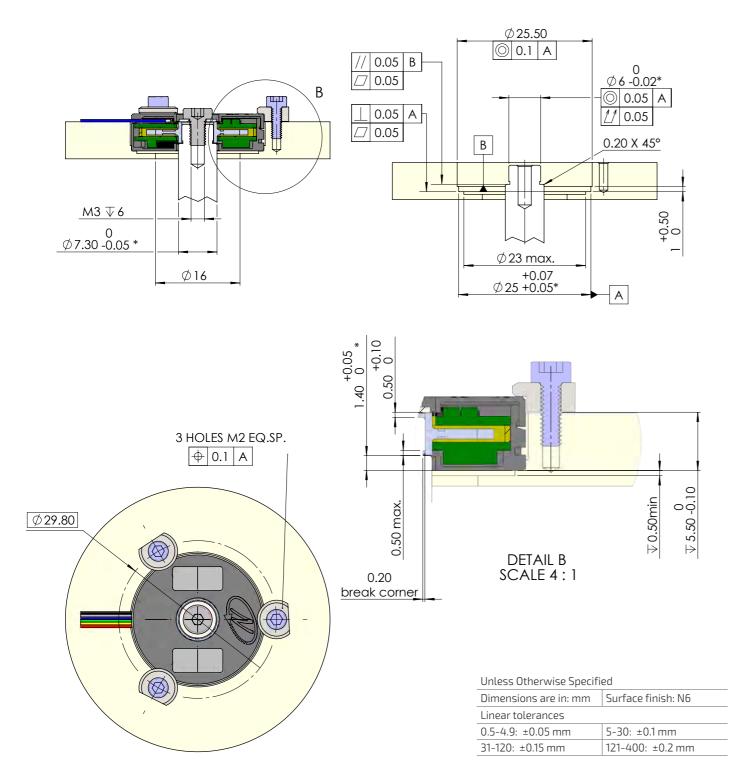

Dimensions are in: mm	Surface finish: N6	
Linear tolerances		
0.5-4.9: ±0.05 mm	5-30: ±0.1 mm	
31-120: ±0.15 mm	121-400: ±0.2 mm	

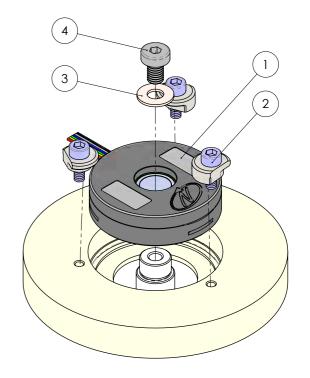
Shaft - End installation (step)

No	Part			Description	QTY.
1	DS-25	Included		DS-25 encoder	1
2	EAPK004	Included	Kit 0-80"	3 x encoder clamps nylon	1
3		Ontional	Shaft end	Washer DIN125-A3.2	1
4	MA-DS25-004	Optional	installation kit	Screw DIN 7984 M3x5	1

Critical dimensions marked with "*"

WARNING




Do not use Loctite or other glues containing Cyanoacrylate. We recommend to use 3M glue - Scotch-Weld™ Epoxy Adhesive EC-2216 B/A.

Deep, Shaft - End installation (step)

No	Part			Description	QTY.
1	DS-25	Included		DS-25 encoder	1
2	EAPK005	Optional	Kit	3 x M2 encoder clamps	1
3		Ontional	Shaft end	Washer DIN125-A3.2	1
4	MA-DS25-004	Optional	installation kit	Screw DIN 7984 M3x5	1

Critical dimensions marked with "*"

WARNING

Do not use Loctite or other glues containing Cyanoacrylate. We recommend to use 3M glue - Scotch-Weld™ Epoxy Adhesive EC-2216 B/A.

DS-25-UM-V02