Micronor

MR344 Hollow Shaft Incremental Fiber Optic Encoder

Part no.: MR344 Hollow Shaft Incremental Fiber Optic Encoder

Key Features

• 100% passive sensing design – no electronics whatsoever

• Up to 1.25" through hollow design

• Sensor can be installed in all manner of hazardous locations and potentially explosive atmospheres

• Immune to EMI and RFI

The MR341 Mini Rotary Encoder is a Size 11, small form factor incremental encoder offering resolution to 512ppr. It is inter-mountable with resolvers, synchros and conventional electronic-based encoders of the same size. The MR341 Encoder is a 100% passive sensor which operates entirely in the optical domain. The sensor provides immunity to any electro-magnetic interferences such as lightning, radiation, magnetic fields and other harsh environment conditions. The innovative design provides 100% electrical isolation as well as immunity to high voltages – ideal for harsh environment applications such as feedback for welding robots, measuring anode position in smelters, and monitoring pantograph operation in electric rail applications.

Call us for more info at 856-727-9500

"*" indicates required fields

Hi, My name is

and I’m interested in the

You can reach me by email at

or phone at

Message

This field is for validation purposes and should be left unchanged.
You may also be interested in:

Micronor

MR340 Incremental Controller for MR340__ Series Sensors

  • 100% passive sensing design – no electronics whatsoever
  • Linear and rotary sensor configurations
  • Sensor can be installed in all manner of hazardous locations and potentially explosive atmospheres
  • Immune to EMI and RFI

Micronor

MR342 Incremental Fiber Optic Encoder

  • 100% passive sensing design – no electronics whatsoever
  • Linear and rotary sensor configurations
  • Sensor can be installed in all manner of hazardous locations and potentially explosive atmospheres
  • Immune to EMI and RFI

Micronor

MR341 Incremental Fiber Optic Encoder

  • 100% passive sensing design – no electronics whatsoever
  • Linear and rotary sensor configurations
  • Sensor can be installed in all manner of hazardous locations and potentially explosive atmospheres
  • Immune to EMI and RFI

Micronor

MR348 MRI-Safe Rotary Incremental Encoder

  • 100% passive sensing design – no electronics whatsoever
  • Up to 1.25" through hollow design
  • Sensor can be installed in all manner of hazardous locations and potentially explosive atmospheres
  • Immune to EMI and RFI
Blog:

Understanding Hazardous Environments and Their Risks

Hazardous environments are prevalent across various industries, presenting significant risks due to the presence of explosive materials, dangerous gasses, or other hazardous conditions.

Wiegand Effect Energy Harvesting

The “Wiegand effect” was discovered almost fifty years ago and has been used successfully in several specialized applications. However, its full potential for energy harvesting and signal generation has received only limited recognition. With recent enhancements to the energy output from Wiegand devices and the emergence of a new generation of ultra-efficient electronic chips for wireless communications, the technology is showing significant promise, especially in the exciting new area of the Internet of Things (IoT). UBITO, a member of the FRABA Group of technology companies, is leading research and development projects aimed at fulfilling this promise.

Food and Beverage Grade Sensors

Safety, hygiene, and accuracy are critical in food and beverage production and packaging.  While sensors can help to achieve the necessary level of accuracy and efficiency, their requirements must extend far beyond the traditional specs of resolution and communication interface. Fortunately, Everight offers a variety of products that meet these needs.

TMR: A New Revolution in Magnetic Rotary Encoders

Abstract: Tunnel magnetoresistance (TMR) sensing is an exciting new chapter for magnetic-based rotary encoders. Requiring less current, while offering higher signal strength, many of the inherent short comings of Hall Effect based sensors can be addressed.

Download Now

This field is for validation purposes and should be left unchanged.