Part no.: MR340 Incremental Controller for MR340__ Series Sensors
• 100% passive sensing design no electronics whatsoever
• Linear and rotary sensor configurations
• Sensor can be installed in all manner of hazardous locations and potentially explosive atmospheres
• Immune to EMI and RFI
The MR340-1 DIN Rail Mount Controller is the active optical and electrical interface for the MR340 Series ZapFREE Fiber Optic Incremental Encoder System. The system is an innovative all-optical design immune to any electromagnetic interferences such as magnetic fields, lightning, voltage, and other harsh environment conditions.
As the incremental code passes through an MR34X Sensors internal optical pick-up, the phase output of two
light beams creates the classical A/B quadrature signals accessible via the controllers electrical interface.
The controller keeps track of position and also calculates the RPM and speed of the connected encoder Both position and speed can be read via RS485 Modbus RTU serial interface, USB, SSI or analog output. The analog output can be configured for either ±10V or 4-20mA output.
"*" indicates required fields
Micronor
MR342 Incremental Fiber Optic Encoder
Micronor
MR344 Hollow Shaft Incremental Fiber Optic Encoder
Micronor
MR348 MRI-Safe Rotary Incremental Encoder
Micronor
MR342 Incremental Fiber Optic Drawwire Linear Sensor
View Our Case Studies and Industries
Learn more about how Everight Position is helping to power leading technology in a variety of industries.
What is a multiturn rotary encoder?
A multiturn rotary encoder is a sensor that measures the angle of rotation of a shaft, as well as the number of complete revolutions that the shaft has made. This is in contrast to a single-turn encoder, which only measures the angle of rotation, 0 – 360°. Multiturn encoders are used in a variety of applications where it is important to track the position of a moving object, such as in machine tools, robotics, and automation systems.
Wiegand Effect Energy Harvesting
The “Wiegand effect” was discovered almost fifty years ago and has been used successfully in several specialized applications. However, its full potential for energy harvesting and signal generation has received only limited recognition. With recent enhancements to the energy output from Wiegand devices and the emergence of a new generation of ultra-efficient electronic chips for wireless communications, the technology is showing significant promise, especially in the exciting new area of the Internet of Things (IoT). UBITO, a member of the FRABA Group of technology companies, is leading research and development projects aimed at fulfilling this promise.
Spinal surgery robot with advanced robotic guided technologies supports high requirements of predictable surgical procedures.