Micronor

MR348 MRI-Safe Rotary Incremental Encoder

Part no.: MR348 MRI-Safe Rotary Incremental Encoder

Key Features

• 100% passive sensing design – no electronics whatsoever

• Up to 1.25" through hollow design

• Sensor can be installed in all manner of hazardous locations and potentially explosive atmospheres

• Immune to EMI and RFI

The MR348 series Fiber Optic Incremental Sensor is an entirely passive, non-metallic incremental rotary encoder designed for use in Magnetic Resonance Imaging (MRI), functional MRI (fMRI), nanomagnetic detection, EMC test labs, and similar applications where immunity and transparency to electromagnetic fields is required.

Call us for more info at 856-727-9500

"*" indicates required fields

Hi, My name is

and I’m interested in the

You can reach me by email at

or phone at

Message

This field is for validation purposes and should be left unchanged.
You may also be interested in:

Micronor

MR343 MRI Safe Incremental Linear Sensor

  • Non-metallic construction makes the sensor entirely MRI safe
  • 0.1 mm positional resolution
  • Inherently Safe, Simple Mechanical Device
  • Immune to EMI and RFI

Micronor

Micronor MR430 Fiber Optic Encoder

  • 100% passive sensing design – no electronics whatsoever
  • Linear and rotary sensor configurations
  • Sensor can be installed in all manner of hazardous locations and potentially explosive atmospheres
  • Immune to EMI and RFI

Micronor

MR342 Incremental Fiber Optic Encoder

  • 100% passive sensing design – no electronics whatsoever
  • Linear and rotary sensor configurations
  • Sensor can be installed in all manner of hazardous locations and potentially explosive atmospheres
  • Immune to EMI and RFI

Micronor

MR340 Incremental Controller for MR340__ Series Sensors

  • 100% passive sensing design – no electronics whatsoever
  • Linear and rotary sensor configurations
  • Sensor can be installed in all manner of hazardous locations and potentially explosive atmospheres
  • Immune to EMI and RFI
Blog:

Wiegand Effect Energy Harvesting

The “Wiegand effect” was discovered almost fifty years ago and has been used successfully in several specialized applications. However, its full potential for energy harvesting and signal generation has received only limited recognition. With recent enhancements to the energy output from Wiegand devices and the emergence of a new generation of ultra-efficient electronic chips for wireless communications, the technology is showing significant promise, especially in the exciting new area of the Internet of Things (IoT). UBITO, a member of the FRABA Group of technology companies, is leading research and development projects aimed at fulfilling this promise.

Compact, Lightweight, Inductive Ring Encoders

IncOder™ CORE is a robust miniature PCB-based inductive ring encoder designed for robotic joints. IncOder CORE is a non-contact, lightweight absolute rotary inductive encoder fully contained in a printed circuit board kit. The ergonomic hollow bore design is suited for integration into rotary actuators. The position sensor utilizes a unique field-proven inductive technique, delivering highly repeatable, […]

Liquid Level Sensor Interface

The GS liquid level software is an excellent resource for people using sensors to measure fuel, chemicals, or even waste. One of the best features of the Gill Liquid Level Sensors is its compatibility with the GS Level software. The GS Level software makes it easy for the end-user or integrator to change the setting […]

Introduction to Intrinsically Safe Sensors

Intrinsically safe (IS) sensors are unable to produce a spark strong enough to cause ignition. Learn how this is accomplished and design considerations when using IS sensors.