Micronor

MR348 MRI-Safe Rotary Incremental Encoder

Part no.: MR348 MRI-Safe Rotary Incremental Encoder

Key Features

• 100% passive sensing design – no electronics whatsoever

• Up to 1.25" through hollow design

• Sensor can be installed in all manner of hazardous locations and potentially explosive atmospheres

• Immune to EMI and RFI

The MR348 series Fiber Optic Incremental Sensor is an entirely passive, non-metallic incremental rotary encoder designed for use in Magnetic Resonance Imaging (MRI), functional MRI (fMRI), nanomagnetic detection, EMC test labs, and similar applications where immunity and transparency to electromagnetic fields is required.

Call us for more info at 856-727-9500

"*" indicates required fields

Hi, My name is

and I’m interested in the

You can reach me by email at

or phone at

Message

This field is for validation purposes and should be left unchanged.
You may also be interested in:

Micronor

MR344 Hollow Shaft Incremental Fiber Optic Encoder

  • 100% passive sensing design – no electronics whatsoever
  • Up to 1.25" through hollow design
  • Sensor can be installed in all manner of hazardous locations and potentially explosive atmospheres
  • Immune to EMI and RFI

Micronor

MR343 MRI Safe Incremental Linear Sensor

  • Non-metallic construction makes the sensor entirely MRI safe
  • 0.1 mm positional resolution
  • Inherently Safe, Simple Mechanical Device
  • Immune to EMI and RFI

Micronor

MR342 Incremental Fiber Optic Drawwire Linear Sensor

  • Please contact Everight for length options up to 50'
  • 100% passive sensing design – no electronics whatsoever
  • Sensor can be installed in all manner of hazardous locations and potentially explosive atmospheres
  • Immune to EMI and RFI

Micronor

MR340 Incremental Controller for MR340__ Series Sensors

  • 100% passive sensing design – no electronics whatsoever
  • Linear and rotary sensor configurations
  • Sensor can be installed in all manner of hazardous locations and potentially explosive atmospheres
  • Immune to EMI and RFI
Blog:

LVR, a Temperature Independent Alternative to LVDT’s in Harsh Environments

The LVR sensor (Linear Variable Resonance), is a new patented non-contact linear position sensor that is a potential replacement for the LVDT sensors in harsh environments.

‘Dirty Deeds Done Dirt Cheap’ – The Gill Blade Sensor

Not all sensors live easy lives. While some will go on to do noble things such as aiding in medical surgery robotics or will find lives in cutting-edge cobots such as Boston Dynamic’s spot, others will live simpler, yet equally important lives, this article is dedicated to one of those unsung heroes, the Gill Blade Sensor.

Miniature Kit Encoders Ensure High Performance in Maxon Micromotors

With the increasing sophistication of electronic controls for mechanical systems, there is more demand for durable, accurate and easy to use displacement sensors. As automation becomes more common there is also an increasing sensitivity to price. Customers also want sensors that can be easily connected and mechanically integrated.

How To: Use an Open Collector Output

All new Gill level sensors come with a secondary output function which operates as a high or low level switch. So what is it and how do I use an Open Collector switch output?

Download Now

This field is for validation purposes and should be left unchanged.